The only 300 101 pdf resources for you


♥♥ 2018 NEW RECOMMEND ♥♥

Free VCE & PDF File for Cisco 300-101 Real Exam (Full Version!)

★ Pass on Your First TRY ★ 100% Money Back Guarantee ★ Realistic Practice Exam Questions

Free Instant Download NEW 300-101 Exam Dumps (PDF & VCE):
Available on: https://www.certleader.com/300-101-dumps.html


Want to know Testking ccnp 300 101 pdf Exam practice test features? Want to lear more about Cisco Implementing Cisco IP Routing certification experience? Study 100% Correct Cisco ccnp routing and switching route 300 101 official cert guide answers to Update ccnp dumps 300 101 questions at Testking. Gat a success with an absolute guarantee to pass Cisco 300 101 route pdf (Implementing Cisco IP Routing) test on your first attempt.

Q1. A packet capture log indicates that several router solicitation messages were sent from a local host on the IPv6 segment. What is the expected acknowledgment and its usage? 

A. Router acknowledgment messages will be forwarded upstream, where the DHCP server will allocate addresses to the local host. 

B. Routers on the IPv6 segment will respond with an advertisement that provides an external path from the local subnet, as well as certain data, such as prefix discovery. 

C. Duplicate Address Detection will determine if any other local host is using the same IPv6 address for communication with the IPv6 routers on the segment. 

D. All local host traffic will be redirected to the router with the lowest ICMPv6 signature, which is statically defined by the network administrator. 

Answer:

Explanation: 

Router Advertisements (RA) are sent in response to router solicitation messages. Router

solicitation messages, which have a value of 133 in the Type field of the ICMP packet header, are sent by

hosts at system startup so that the host can immediately autoconfigure without needing to wait for the next

scheduled RA message. Given that router solicitation messages are usually sent by hosts at system

startup (the host does not have a configured unicast address), the source address in router solicitation

messages is usually the unspecified IPv6 address (0:0:0:0:0:0:0:0). If the host has a configured unicast

address, the unicast address of the interface sending the router solicitation message is used as the source

address in the message. The destination address in router solicitation messages is the all-routers multicast

address with a scope of the link. When an RA is sent in response to a router solicitation, the destination

address in the RA message is the unicast address of the source of the router solicitation message. RA

messages typically include the following information:

One or more onlink IPv6 prefixes that nodes on the local link can use to automatically configure their IPv6

addresses

Lifetime information for each prefix included in the advertisement

Sets of flags that indicate the type of autoconfiguration (stateless or stateful) that can be completed

Default router information (whether the router sending the advertisement should be used as a default

router and, if so, the amount of time (in seconds) the router should be used as a default router)

Additional information for hosts, such as the hop limit and MTU a host should use in packets that it

originates Reference: http://www.cisco.com/c/en/us/td/docs/ios/ipv6/configuration/guide/12_4t/

ipv6_12_4t_book/ip6- addrg_bsc_con.html


Q2. A network engineer is trying to modify an existing active NAT configuration on an IOS router by using the following command: 

(config)# no ip nat pool dynamic-nat-pool 192.1.1.20 192.1.1.254 netmask 255.255.255.0 

Upon entering the command on the IOS router, the following message is seen on the console: 

%Dynamic Mapping in Use, Cannot remove message or the %Pool outpool in use, cannot destroy 

What is the least impactful method that the engineer can use to modify the existing IP NAT configuration? 

A. Clear the IP NAT translations using the clear ip nat traffic * " command, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

B. Clear the IP NAT translations using the clear ip nat translation * " command, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

C. Clear the IP NAT translations using the reload command on the router, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

D. Clear the IP NAT translations using the clear ip nat table * " command, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

Answer:

Explanation: 


Q3. Which statement about the use of tunneling to migrate to IPv6 is true? 

A. Tunneling is less secure than dual stack or translation. 

B. Tunneling is more difficult to configure than dual stack or translation. 

C. Tunneling does not enable users of the new protocol to communicate with users of the old protocol without dual-stack hosts. 

D. Tunneling destinations are manually determined by the IPv4 address in the low-order 32 bits of IPv4-compatible IPv6 addresses. 

Answer:

Explanation: 

Using the tunneling option, organizations build an overlay network that tunnels one protocol over the other

by encapsulating IPv6 packets within IPv4 packets and IPv4 packets within IPv6 packets. The advantage of this approach is that the new protocol can work without disturbing the old protocol, thus providing connectivity between users of the new protocol. Tunneling has two disadvantages, as discussed in RFC 6144: Users of the new architecture cannot use the services of the underlying infrastructure.

Tunneling does not enable users of the new protocol to communicate with users of the old protocol without

dual-stack hosts, which negates interoperability. 

Reference: http://www.cisco.com/c/en/us/products/

collateral/ios-nx-os-software/enterprise-ipv6- solution/white_paper_c11-676278.html


Q4. Which Cisco VPN technology uses AAA to implement group policies and authorization and is also used for the XAUTH authentication method? 

A. DMVPN 

B. Cisco Easy VPN 

C. GETVPN 

D. GREVPN 

Answer:

Explanation: 


Q5. Which statement about the NPTv6 protocol is true? 

A. It is used to translate IPv4 prefixes to IPv6 prefixes. 

B. It is used to translate an IPv6 address prefix to another IPv6 prefix. 

C. It is used to translate IPv6 prefixes to IPv4 subnets with appropriate masks. 

D. It is used to translate IPv4 addresses to IPv6 link-local addresses. 

Answer:

Explanation: 


Q6. Which three items can you track when you use two time stamps with IP SLAs? (Choose three.) 

A. delay 

B. jitter 

C. packet loss 

D. load 

E. throughput 

F. path 

Answer: A,B,C


Q7. Which three TCP enhancements can be used with TCP selective acknowledgments? (Choose three.) 

A. header compression 

B. explicit congestion notification 

C. keepalive 

D. time stamps 

E. TCP path discovery 

F. MTU window 

Answer: B,C,D 

Explanation: 

TCP Selective Acknowledgment

The TCP Selective Acknowledgment feature improves performance if multiple packets are lost from one

TCP window of data.

Prior to this feature, because of limited information available from cumulative acknowledgments, a TCP

sender could learn about only one lost packet per-round-trip

time. An aggressive sender could choose to resend packets early, but such re-sent segments might have

already been successfully received.

The TCP selective acknowledgment mechanism helps improve performance. The receiving TCP host

returns selective acknowledgment packets to the sender,

informing the sender of data that has been received. In other words, the receiver can acknowledge packets

received out of order. The sender can then resend only

missing data segments (instead of everything since the first missing packet).

Prior to selective acknowledgment, if TCP lost packets 4 and 7 out of an 8-packet window, TCP would

receive acknowledgment of only packets 1, 2, and 3. Packets

4 through 8 would need to be re-sent. With selective acknowledgment, TCP receives acknowledgment of

packets 1, 2, 3, 5, 6, and 8. Only packets 4 and 7 must be

re-sent.

TCP selective acknowledgment is used only when multiple packets are dropped within one TCP window.

There is no performance impact when the feature is

enabled but not used. Use the ip tcp selective-ack command in global configuration mode to enable TCP

selective acknowledgment.

Refer to RFC 2018 for more details about TCP selective acknowledgment.

TCP Time Stamp

The TCP time-stamp option provides improved TCP round-trip time measurements. Because the time

stamps are always sent and echoed in both directions and the time-stamp value in the header is always

changing, TCP header compression will not compress the outgoing packet. To allow TCP header

compression over a serial link, the TCP time-stamp option is disabled. Use the ip tcp timestamp command

to enable the TCP time-stamp option.

TCP Explicit Congestion Notification

The TCP Explicit Congestion Notification (ECN) feature allows an intermediate router to notify end hosts of

impending network congestion. It also provides enhanced support for TCP sessions associated with

applications, such as Telnet, web browsing, and transfer of audio and video data that are sensitive to delay

or packet loss. The benefit of this feature is the reduction of delay and packet loss in data transmissions.

Use the ip tcp ecn command in global configuration mode to enable TCP ECN.

TCP Keepalive Timer

The TCP Keepalive Timer feature provides a mechanism to identify dead connections. When a TCP

connection on a routing device is idle for too long, the device sends a TCP keepalive packet to the peer

with only the Acknowledgment (ACK) flag turned on. If a response packet (a TCP ACK packet) is not

received after the device sends a specific number of probes, the connection is considered dead and the

device initiating the probes frees resources used by the TCP connection. Reference: http://www.cisco.com/

c/en/us/td/docs/ios-xml/ios/ipapp/configuration/xe-3s/asr1000/iap-xe-3s-asr1000-book/iap-tcp.html#GUID-22A82C5F-631F-4390-9838-F2E48FFEEA01


Q8. Which two functions are completely independent when implementing NAT64 over NAT-PT? (Choose two.) 

A. DNS 

B. NAT 

C. port redirection 

D. stateless translation 

E. session handling 

Answer: A,B 

Explanation: 

Network Address Translation IPv6 to IPv4, or NAT64, technology facilitates communication

between IPv6-only and IPv4-only hosts and networks (whether in a transit, an access, or an edge

network). This solution allows both enterprises and ISPs to accelerate IPv6 adoption while simultaneously

handling IPv4 address depletion. The DNS64 and NAT64 functions are completely separated, which is

essential to the superiority of NAT64 over NAT-PT. Reference: http:// www.cisco.com/c/en/us/products/

collateral/ios-nx-os-software/enterprise-ipv6- solution/white_paper_c11-676278.html


Q9. What is the primary service that is provided when you implement Cisco Easy Virtual Network? 

A. It requires and enhances the use of VRF-Lite. 

B. It reduces the need for common services separation. 

C. It allows for traffic separation and improved network efficiency. 

D. It introduces multi-VRF and label-prone network segmentation. 

Answer:

Explanation: 


Q10. Which type of traffic does DHCP snooping drop? 

A. discover messages 

B. DHCP messages where the source MAC and client MAC do not match 

C. traffic from a trusted DHCP server to client 

D. DHCP messages where the destination MAC and client MAC do not match 

Answer:

Explanation: 

The switch validates DHCP packets received on the untrusted interfaces of VLANs with DHCP snooping

enabled. The switch forwards the DHCP packet unless any of the following conditions occur (in which case the packet is dropped):

The switch receives a packet (such as a DHCPOFFER, DHCPACK, DHCPNAK, or DHCPLEASEQUERY

packet) from a DHCP server outside the network or firewall.

The switch receives a packet on an untrusted interface, and the source MAC address and the DHCP client

hardware address do not match. This check is performed only if the DHCP snooping MAC address

verification option is turned on. · The switch receives a DHCPRELEASE or DHCPDECLINE message from an untrusted host with an entry in the DHCP snooping binding table, and the interface information in the binding table does not match the interface on which the message was received.

The switch receives a DHCP packet that includes a relay agent IP address that is not 0.0.0.0. To support

trusted edge switches that are connected to untrusted aggregation-switch ports, you can enable the DHCP

option-82 on untrusted port feature, which enables untrusted aggregation- switch ports to accept DHCP

packets that include option-82 information. Configure the port on the edge switch that connects to the

aggregation switch as a trusted port. Reference: http:// www.cisco.com/c/en/us/td/docs/switches/lan/

catalyst6500/ios/12- 2SX/configuration/guide/book/snoodhcp.html

Topic 7, Mix Questions 

83. Which two commands would be used to troubleshoot high memory usage for a process? (Choose two.) 

A. router#show memory allocating-process table 

B. router#show memory summary 

C. router#show memory dead 

D. router#show memory events 

E. router#show memory processor statistics 

Answer: A,B 

Explanation: 



Click to learn more regarding http://www.exam4collection.com/vce/300-101/